DTC    P1603    Engine Stall History

DTC    P1605    Rough Idling

for Preparation Click here


DESCRIPTION

  1. P1603
After starting the engine, this DTC is stored when the engine stops without the ignition switch being operated.
Using the Techstream, the conditions present when the DTC was stored can be confirmed by referring to the freeze frame data. Freeze frame data records engine conditions when a malfunction occurs. This information can be useful when troubleshooting.
It is necessary to check if the vehicle has ran out of fuel before performing troubleshooting, as this DTC is also stored when the engine stalls due to running out of fuel.

DTC No.
DTC Detection Condition
Trouble Area
P1603*1
After monitoring for startability problems (P1604) finishes and 5 seconds or more elapse after starting the engine, with the engine running, the engine stops (the engine speed drops to 200 rpm or less) without the ignition switch being operated for 0.5 seconds or more
(1 trip detection logic).
  1. Air leak in intake system
  2. Purge VSV
  3. Brake booster hose not connected properly
  4. Mass air flow meter
  5. Engine coolant temperature sensor
  6. Wire harness or connector
  7. Air fuel ratio sensor
  8. Power supply circuit (purge VSV, fuel injector, ignition coil)
  9. Fuel pump
  10. Fuel pump control system
  11. Fuel line
  12. Throttle body
  13. Camshaft timing oil control valve (for intake or exhaust camshaft)
  14. VVT system
  15. Air conditioning system
  16. Power steering system
  17. Electrical load signal system
  18. Automatic transaxle system
  19. Park/Neutral position switch
  20. Thermostat
  21. ECM
*1: for Automatic transaxle models
  1. P1605
This DTC is stored if the engine speed drops below the set speed.
Using the Techstream, the conditions present when the DTC was stored can be confirmed by referring to the freeze frame data. Freeze frame data records engine conditions when a malfunction occurs. This information can be useful when troubleshooting.
It is necessary to check if the vehicle ran out of fuel before performing troubleshooting, as this DTC is also stored when idling is unstable due to running out of fuel.

DTC No.
DTC Detection Condition
Trouble Area
P1605
After 5 seconds or more elapse after starting the engine, with the engine running, the engine speed drops to 400 rpm or less (1 trip detection logic).
  1. Air leak in intake system
  2. Purge VSV
  3. Brake booster hose not connected properly
  4. Mass air flow meter
  5. Engine coolant temperature sensor
  6. Wire harness or connector
  7. Air fuel ratio sensor
  8. Power supply circuit (purge VSV, fuel injector, ignition coil)
  9. Fuel pump
  10. Fuel pump control system
  11. Fuel line
  12. Throttle body
  13. Camshaft timing oil control valve (for intake or exhaust camshaft)
  14. VVT system
  15. Knock sensor
  16. Ignition coil
  17. Fuel injector
  18. Spark plug(s)
  19. Air conditioning system
  20. Power steering system
  21. Electrical load signal system
  22. Automatic transaxle system*1
  23. Park/Neutral position switch*1
  24. ECM
*1: for Automatic transaxle models

Reference waveforms showing a normal cold engine start

A223608


Reference waveforms showing a normal warm engine start

A223609


Reference values when there is an air leak in the intake system during rough idling

Freeze Frame Data P1605 Rough Idling 
Engine
Current
P1605: Rough Idling
Time Freeze Frame Data
Item
Data1
Data2
Data3
Data4
Data5
Unit
Engine Speed
647
649
586
378
182
rpm
Calculate Load
26.2
26.2
29.1
42.6
58.6
%
Vehicle Load
11.7
11.7
12.1
48.7
61.2
%
MAF
2.87
2.87
2.87
6.23
3.04
gm/sec
Atmosphere Pressure
-0
-0
-0
-0
-0
psi (gauge)
Coolant Temp
86
86
86
86
86
°C
Intake Air
43
43
43
43
43
°C
Battery Voltage
13.515
13.515
13.264
12.892
12.792
V
Throttle Sensor Volt %
14.5
14.5
14.5
16.8
17.2
%
Throttl Sensor #2 Volt %
46.2
46.2
46.2
48.4
49.2
%
Throttle Sensor Position
0.0
0.0
0.0
0.0
0.0
%
Throttle Motor DUTY
14.5
14.5
14.5
17.2
17.2
%
Injector (Port)
2159
2161
2148
2190
2190
μs
Injection Volume (Cylinder 1)
0.093
0.093
0.093
0.095
0.095
ml
Fuel Pump/Speed Status
ON
ON
ON
ON
ON

EVAP (Purge) VSV
13.3
13.3
13.3
13.3
13.3
%
Evap Purge Flow
2.9
2.9
2.9
3.2
3.2
%
Purge Density Learn Value
0.891
0.891
0.891
0.891
0.891

EVAP System Vent Valve
OFF
OFF
OFF
OFF
OFF

EVAP Purge VSV
OFF
OFF
OFF
OFF
OFF

Purge Cut VSV Duty
8.5
8.5
8.5
8.5
8.5
%
Target Air-Fuel Ratio
0.998
0.998
0.998
0.998
0.998

AF Lambda B1S1
0.999
0.997
1.001
1.038
1.118

AFS Voltage B1S1
3.258
3.242
3.284
3.521
3.715
V
O2S B1S2
0.740
0.740
0.740
0.740
0.740
V
Short FT #1
-1.563
-1.563
-1.563
-1.563
-1.563
%
Long FT #1
6.250
6.250
6.250
6.250
6.250
%
Total FT #1
0.054
0.054
0.054
0.054
0.054

Fuel System Status #1
CL
CL
CL
CL
CL

IGN Advance
22.0
22.0
22.5
23.5
23.5
Deg
Knock Feedback Value
-1.5
-1.5
-1.5
-1.5
-1.5
°CA
Knock Correct Learn Value
17.0
17.0
17.0
17.0
17.0
°CA
Starter Signal
Close
Close
Close
Close
Close

Ambient Temperature
21
21
21
21
21
°C

INSPECTION PROCEDURE

NOTICE:
Inspect the fuses for circuits related to this system before performing the following inspection procedure.

HINT:
  1. In contrast to normal malfunction diagnosis for components, circuits and systems, DTCs P1603 and P1605 are used to determine the malfunctioning area from the problem symptoms and freeze frame data when the user mentions problems such as engine stall.
    As these DTCs can be stored as a result of certain user actions, even if these DTCs are output, if the customer makes no mention of problems, clear these DTCs without performing any troubleshooting and return the vehicle to the customer.
  2. If any other DTCs are output, perform troubleshooting for those DTCs first.
  3. Use any information from the customer problem analysis about the condition of the vehicle at the time when the problem occurred (how the engine stopped, conditions when the engine was restarted, etc.) as a reference.

    Symptom
    Suspected Area
    Engine vibration occurs and engine stops
    Air-fuel ratio abnormal
    Engine stops with no engine vibration
    Ignition system, injection stoppage, high load from external parts
    Engine can be started with accelerator pedal depressed
    Insufficient air volume
    Rough idling after engine started
    Air-fuel ratio abnormal, abnormal combustion
  4. Read freeze frame data using the Techstream. Freeze frame data records engine conditions when a malfunction occurs. This information can be useful when troubleshooting.
  5. When confirming the freeze frame data, be sure to check all 5 sets of freeze frame data (Click here).
  6. When DTC P1603 (Engine Stall History) is stored, DTC P1605 (Rough Idling) is also stored. When confirming freeze frame data, check DTC P1605. (The ECM stores DTC P1605 first. Therefore, the 5 sets of freeze frame data can be confirmed through DTC P1605, enabling the technician to obtain more information.)
  7. When confirming freeze frame data, if there are multiple items related to the cause of the malfunction, perform troubleshooting for all related items.
  8. Try to operate the vehicle under the conditions recorded in the freeze frame data which were present when the malfunction occurred. Confirm the data at this time and the data when the engine is idling (engine warmed up and no load) and compare these data with the freeze frame data.
  9. Inspections take into account the fact that the malfunction may not have reoccurred and place emphasis on checking the vehicle conditions present at the time when the malfunction occurred.
  10. When performing inspections, jiggle the relevant wire harnesses and connectors in an attempt to reproduce malfunctions that do not always occur.

Inspection flow:
Using freeze frame data, narrow down the parts to be inspected according to the vehicle conditions at the time when the malfunction occurred.
  1. P1603:

A222599E01

1:
  1. If the engine stalled when the intake air volume was low (during idling or deceleration), there may be a decrease in torque due to an incorrect air-fuel ratio, etc.
  2. If the engine stalled when the intake air volume was high (during driving or acceleration), there may be a major malfunction such as continuous misfire due to ignition stoppage, fuel injection stoppage, etc. and the torque drops to zero.
2:
  1. If the engine speed decreased slowly, there may have been a decrease in torque due to an air-fuel ratio that was incorrect (by approximately 20 to 30%), etc.
  2. If the engine speed decreased rapidly, there may have been a malfunction such as when the engine misfires almost continuously due to ignition stoppage, fuel injection stoppage, etc., or when the external load increases due to an external part malfunctioning.
3:
  1. If the air-fuel ratio is abnormal, there may have been an intake air leak, sensor malfunction, or fuel supply problem.
  2. If the vehicle was normal, the air volume may have been insufficient, or the ignition timing may have been incorrect.
P1603 inspection flow: Narrow down the parts to be inspected according to the vehicle conditions at the time when the malfunction occurred (freeze frame data).

Vehicle State
Engine Speed
Suspected Area
Primary Parts to Inspect
Procedure
Idling or decelerating
Slowly decreases and engine stalls
Air-fuel ratio abnormal
Air suction
  1. Intake system connections
  2. Purge VSV system
  3. Brake booster
3 to 6
Sensor malfunction (value from sensor too lean)
  1. Mass air flow meter sub-assembly
  2. Engine coolant temperature sensor
  3. Thermostat
  4. Air fuel ratio sensor system
7 to 16
Sensor malfunction (value from sensor too rich)
25 to 34
Fuel supply problem
  1. Fuel pump control system
  2. Purge VSV system
  3. Fuel line
  4. ECM
17 to 24
Intake air volume insufficient
ISC flow rate
  1. Throttle body assembly (ISC valve)
35 to 37
Excessive valve overlap
  1. Camshaft timing oil control valve
  2. VVT system
38, 39
Ignition timing incorrect
Does not operate as expected
  1. Engine coolant temperature sensor
  2. Mass air flow meter sub-assembly
  3. Knock control sensor
40 to 42
Rapidly decreases and engine stalls
Ignition and injection stops (electrical system malfunction)
Power temporarily cut
  1. Power supply circuit (Fuel injector assembly, Ignition coil assembly)
43 to 46
External part malfunctioning
Increase in load
  1. Air conditioning system
  2. Electrical load signal system
  3. Automatic transaxle system
  4. Park/Neutral position switch
47 to 50
Accelerating
-
Crankshaft position sensor, Camshaft position sensor malfunction
Power temporarily cut
  1. Check DTCs
1
Mass air flow meter sub-assembly
Foreign matter adhesion
  1. Mass air flow meter sub-assembly
51, 52
Fuel supply problem
Fuel leak, clog
  1. Fuel pump control system
  2. Fuel line
55 to 57
Ignition and injection stops (electrical system malfunction)
Power temporarily cut
  1. Power supply circuit (Fuel injector, Ignition coil assembly)
53, 54
  1. P1605:

A222600E01

1:
  1. If the engine speed decreased slowly, there may have been a decrease in torque due an air-fuel ratio that was incorrect (by approximately 20 to 30%), etc.
  2. If the engine speed decreased rapidly, there may have been a malfunction such as when the engine misfires almost continuously due to ignition stoppage, fuel injection stoppage, etc., or when the external load increases due to an external part malfunctioning.
2:
  1. If the air-fuel ratio is abnormal, there may have been an intake air leak, sensor malfunction, or fuel supply problem.
  2. If the vehicle was normal, the air volume may have been insufficient, or the ignition timing may have been incorrect.
P1605 inspection flow: Narrow down the parts to be inspected according to the vehicle conditions at the time when the malfunction occurred (freeze frame data).

Engine Speed
Suspected Area
Primary Parts to Inspect
Procedure
Slowly decreases and engine stalls
Air-fuel ratio abnormal
Air suction
  1. Intake system connections
  2. Purge VSV system
  3. Brake booster
3 to 6
Sensor malfunction (value from sensor too lean)
  1. Mass air flow meter sub-assembly
  2. Engine coolant temperature sensor
  3. Thermostat
  4. Air fuel ratio sensor system
7 to 16
Sensor malfunction (value from sensor too rich)
25 to 34
Fuel supply problem
  1. Fuel pump control system
  2. Purge VSV system
  3. Fuel line
  4. ECM
17 to 24
Intake air volume insufficient
ISC flow rate
  1. Throttle body assembly (ISC valve)
35 to 37
Ignition timing incorrect
Does not operate as expected
  1. Knock control sensor
  2. Engine coolant temperature sensor
  3. Mass air flow meter sub-assembly
40 to 42
Rapidly decreases and engine stalls
Ignition and injection stops (electrical system malfunction)
Power temporarily cut
  1. Power supply circuit (Fuel injector assembly, Ignition coil assembly)
43 to 46
External part malfunctioning
Increase in load
  1. Air conditioning system
  2. Electrical load signal system
  3. Automatic transaxle system*
  4. Park/Neutral position switch*
47 to 50
*: for Automatic transaxle models

NOTICE:
Inspect the fuses for circuits related to this system before performing the following inspection procedure.
1.CHECK ANY OTHER DTCS OUTPUT (IN ADDITION TO DTC P1603 OR P1605)
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Turn the Techstream on.

  1. Enter the following menus: Powertrain / Engine and ECT / Trouble Codes.

  1. Read the DTCs.

    Result:

    Result
    Proceed to
    Only DTC P1603 and/or P1605 are output
    A
    DTCs other than P1603 and P1605 are output
    B


B
GO TO DTC CHART (Click here)
A


2.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.



  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Problem Symptom
    Freeze Frame Data Item for DTC P1605
    Suspected Area
    Proceed to
    Closed Throttle Position SW
    Engine Speed
    Total of Short FT #1 and Long FT #1
    When idling or decelerating, engine speed slowly decreases and engine stalls
    All 5 sets of freeze frame data are ON
    Decreases slowly*1
    All 5 sets of freeze frame data are +15% or more*2
    1. Air suction
    1. Sensor malfunction (value from sensor too lean)
    1. Fuel supply problem
    A
    At least 1 of the 5 sets of freeze frame data is -15% or less*3
    Sensor malfunction (value from sensor too rich)
    B
    All 5 sets of freeze frame data are from -15% to +15%
    1. Intake air volume insufficient
    1. Ignition timing incorrect
    C
    When idling or decelerating, engine speed rapidly decreases and engine stalls
    Decreases rapidly*1
    -
    1. Injection stoppage, ignition stoppage
    1. Load from external parts
    D
    When accelerating or driving at constant speed, engine stalls*4
    At least one is OFF
    -
    -
    1. Sensor malfunction
    1. Injection stoppage, ignition stoppage
    1. Fuel supply problem
    E

    A215381E01

    HINT:
    1. *1: A rapid decrease in engine speed may have been caused by an electrical malfunction in the shared wiring of all or multiple cylinders, an increase in load from external parts, etc. The engine speed is considered to have decreased rapidly if either of the following conditions apply.
      Otherwise, the engine speed is considered to have decreased slowly.
      1. In the freeze frame data, the decrease in engine speed from #3 to #5 is 400 rpm or more.
      2. In the freeze frame data, the engine speed at #5 is 120 rpm or less.
    1. *2: When a DTC is stored, feedback compensation increases because the air-fuel ratio is determined to be lean.
    2. *3: When a DTC is stored, feedback compensation decreases because the air-fuel ratio is determined to be rich.
    3. *4: This item should be checked when DTC P1603 is output and is not necessary to check when only P1605 is output.


B
Go to step 25

C
Go to step 35

D
Go to step 43

E
Go to step 51
A


3.CHECK INTAKE SYSTEM
  1. Check for air suction in the intake system [vacuum hose disconnection, cracks, gaskets, etc.] (Click here).

    HINT:
    1. If the accelerator pedal is released after racing the engine, the inspection is easier to perform because the vacuum inside the intake pipes increases and the air suction noise becomes louder.
    2. If Short FT #1 and Long FT #1 are largely different from the normal values when idling (the intake air volume is small) and almost the same as the normal values when racing the engine (the intake air volume is high), air leakage may be present.

    OK:
    There is no air suction.


NG
REPAIR OR REPLACE INTAKE SYSTEM
OK


4.CHECK PURGE VSV


    A172615
  1. Disconnect the purge hose (on the canister side) of the purge VSV.

  1. Start the engine.

  1. Disconnect the connector of the purge VSV.

  1. Check if air flows through the purge VSV.

    OK:
    Air does not flow.
  1. Connect the connector of the purge VSV.

  1. Connect the purge hose of the purge VSV.

    HINT:
    When this inspection is performed, the MIL may illuminate. After finishing the inspection, check and clear the DTCs (Click here).


NG
INSPECT PURGE VSV (Click here)
OK


5.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Suspected Area
    Proceed to
    Stop Light Switch
    At least 1 of the 5 sets of freeze frame data is ON
    Air suction from brake booster
    A
    All 5 sets of freeze frame data are OFF
    -
    B


B
Go to step 7
A


6.READ VALUE USING TECHSTREAM (SHORT FT #1)
A217928E05
  1. Connect the Techstream to the DLC3.

  1. Start the engine, turn off all accessory switches and warm up the engine until the engine coolant temperature stabilizes.

  1. Idle the engine.

  1. Turn the Techstream on.

  1. Enter the following menus: Powertrain / Engine and ECT / Data List / All Data / Short FT #1.

  1. Read value of the Data List items while depressing the brake pedal.

    Standard:
    Short FT #1 change by +10% or less.

    HINT:
    1. Even if the results are normal, the brake booster may have been malfunctioning. Continue this inspection procedure until step 24, and if there are no problems with other parts, replace the brake booster (refer to step 58).
    1. When air suction is present, the feedback compensation increases because the air-fuel ratio becomes lean.
    1. It is also possible to perform the airtightness inspection to check the brake booster (Click here).


NG
REPLACE BRAKE BOOSTER (Click here)
OK


7.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Suspected Area
    Proceed to
    Calculate Load
    Below 90% of the current value of the vehicle*1
    Mass air flow meter sub-assembly
    A
    AFS Voltage B1S1
    3.3 V or higher*2
    1. Air fuel ratio sensor
    2. Wire harness or connector
    3. Actual air-fuel ratio abnormal
    B
    Both freeze frame data items listed above
    Values are other than above
    -
    C

    HINT:
    1. Try to operate the vehicle under the conditions recorded in the freeze frame data which were present when the malfunction occurred. Confirm the data at this time and the data when the engine is idling (engine warmed up and no load) and compare these data with the freeze frame data.
    2. *1: If the mass air flow meter sub-assembly is malfunctioning and incorrectly measures the pressure to be less than the actual intake manifold pressure, the freeze frame data will show a low engine load value.
    3. *2: If the air fuel ratio sensor is malfunctioning and constantly outputs a value indicating the air-fuel ratio is lean, the actual air-fuel ratio will become rich and the engine may stall.


B
Go to step 9

C
Go to step 12
A


8.CHECK MASS AIR FLOW METER
  1. Remove the mass air flow meter sub-assembly.

  1. Check for foreign matter in the air flow passage of the mass air flow meter sub-assembly.

    Result:

    Result
    Proceed to
    Visible foreign matter is present
    A
    Visible foreign matter is not present
    B
  1. Install the mass air flow meter sub-assembly.

    HINT:
    Even if the results are normal, the mass air flow meter sub-assembly may have been malfunctioning. Continue this inspection procedure until step 24, and if there are no problems with other parts, replace the mass air flow meter sub-assembly (refer to step 58).


B
Go to step 12
A

REPLACE MASS AIR FLOW METER SUB-ASSEMBLY (Click here)  

9.PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE INJECTION VOLUME)


    A215382E20
  1. Connect the Techstream to the DLC3.

  1. Start the engine, turn off all accessory switches and warm up the engine until the engine coolant temperature stabilizes.

  1. Idle the engine.

  1. Turn the Techstream on.

  1. Enter the following menus: Powertrain / Engine and ECT / Active Test / Control the Injection Volume / All Data / AFS Voltage B1S1 and O2S B1S2.

  1. Read the output voltage from the air fuel ratio sensor when increasing and decreasing the fuel injection volume.

    Standard:
    Techstream Display
    Specified Condition
    Control the Injection Volume (12%)
    Air fuel ratio sensor output voltage is below 3.1 V
    Control the Injection Volume (-12%)
    Air fuel ratio sensor output voltage is higher than 3.4 V

    Result:
    Result
    Proceed to
    NG
    A
    OK
    B

    HINT:
    1. The air fuel ratio sensor has an output delay of a few seconds and the heated oxygen sensor has a maximum output delay of approximately 20 seconds.
    2. If there is almost no response from the air fuel ratio sensor, a malfunction of the air fuel ratio sensor is suspected.
    3. Even if the results are normal, the air fuel ratio sensor may have been malfunctioning. Continue this inspection procedure until step 24, and if there are no problems with other parts, replace the air fuel ratio sensor (refer to step 58).


B
Go to step 12
A


10.CHECK AIR FUEL RATIO SENSOR (POWER SOURCE VOLTAGE)


    A170690E03
  1. Disconnect the air fuel ratio sensor connector.

  1. Turn the ignition switch to ON.

  1. Measure the voltage according to the value(s) in the table below.

    Standard Voltage:
    Tester Connection
    Switch Condition
    Specified Condition
    B89-2 (+B) - Body ground
    Ignition switch ON
    11 to 14 V

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. Make sure there is not an excessive amount of force applied to the wire harness.
    3. When this inspection is performed, the MIL may illuminate. After finishing the inspection, check and clear the DTCs (Click here).
  1. Reconnect the air fuel ratio sensor connector.



NG
CHECK AIR FUEL RATIO SENSOR POWER SOURCE CIRCUIT (Click here)
OK


11.CHECK HARNESS AND CONNECTOR (AIR FUEL RATIO SENSOR - ECM)
  1. Disconnect the air fuel ratio sensor connector.

  1. Disconnect the ECM connector.

  1. Measure the resistance according to the value(s) in the table below.

    Standard Resistance (Check for Open):

    Tester Connection
    Condition
    Specified Condition
    B89-1 (HA1A) - B31-104 (HA1A)
    Always
    Below 1 Ω
    B89-3 (A1A+) - B31-103 (A1A+)
    Always
    Below 1 Ω
    B89-4 (A1A-) - B31-126 (A1A-)
    Always
    Below 1 Ω

    Standard Resistance (Check for Short):

    Tester Connection
    Condition
    Specified Condition
    B89-1 (HA1A) or B31-104 (HA1A) - Body ground
    Always
    10 kΩ or higher
    B89-3 (A1A+) or B31-103 (A1A+) - Body ground
    Always
    10 kΩ or higher
    B89-4 (A1A-) or B31-126 (A1A-) - Body ground
    Always
    10 kΩ or higher

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. Make sure there is not an excessive amount of force applied to the wire harness.
  1. Reconnect the ECM connector.

  1. Reconnect the air fuel ratio sensor connector.



NG
REPAIR OR REPLACE HARNESS OR CONNECTOR
OK

REPLACE AIR FUEL RATIO SENSOR (Click here)  

12.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Proceed to
    Initial Engine Coolant Temp, Ambient Temp for A/C, Initial Intake Air Temp
    Difference in temperature between each item is below 10°C (18°F)*1
    A
    Difference in temperature between each item is 10°C (18°F) or more*2
    B

    HINT:
    1. *1: A long time had elapsed after stopping the engine.
    2. *2: A long time had not elapsed after stopping the engine.


B
Go to step 15
A


13.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.



  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).


    A217929E05


    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Suspected Area
    Proceed to
    Initial Engine Coolant Temp, Coolant Temp, Engine Run Time
    Range A
    1. Engine coolant temperature sensor
    2. Thermostat
    A
    Range B
    Engine coolant temperature sensor
    B
    Range C
    -
    C

    HINT:
    This step is not directly related to engine stall.


B
Go to step 16

C
Go to step 17
A


14.INSPECT THERMOSTAT

HINT:
For the thermostat inspection, refer to the following procedures (Click here).

Result:

Result
Proceed to
NG
A
OK
B

HINT:
This step is not directly related to engine stall.


B
Go to step 16
A

REPLACE THERMOSTAT (Click here)  

15.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Suspected Area
    Proceed to
    Coolant Temp
    120°C (248°F) or more
    Engine coolant temperature sensor
    A
    Coolant Temp, Ambient Temp for A/C
    Engine coolant temperature is lower than outside temperature by 15°C (27°F) or more
    Engine coolant temperature sensor
    Both freeze frame data items listed above
    Values are other than above
    -
    B


B
Go to step 17
A


16.INSPECT ENGINE COOLANT TEMPERATURE SENSOR

HINT:
For the engine coolant temperature sensor inspection, refer to the following procedures (Click here).

Result:

Result
Proceed to
NG
A
OK
B

HINT:
Even if the results are normal, the engine coolant temperature sensor may have been malfunctioning. Continue this inspection procedure until step 24, and if there are no problems with other parts, replace the engine coolant temperature sensor (refer to step 58).


B
Go to step 17
A

REPLACE ENGINE COOLANT TEMPERATURE SENSOR (Click here)  

17.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Suspected Area
    Proceed to
    EVAP (Purge) VSV
    At least 1 of the 5 sets of freeze frame data is not 0%
    Purge VSV
    A
    All 5 sets of freeze frame data are 0%
    -
    B

    HINT:
    If the purge VSV is stuck closed, air-fuel ratio compensation by the purge VSV is incorrectly adjusted, and then the air-fuel ratio becomes lean and the engine may stall.


B
Go to step 22
A


18.PERFORM ACTIVE TEST USING TECHSTREAM (ACTIVATE THE VSV FOR EVAP CONTROL)


    A142079E01
  1. Disconnect the purge hose (on the canister side) of the purge VSV.

  1. Connect the Techstream to the DLC3.

  1. Start the engine.

  1. Turn the Techstream on.

  1. Enter the following menus: Powertrain / Engine and ECT / Active Test / Activate the VSV for Evap Control.

  1. When the purge VSV is operated using the Techstream, check whether the part of the purge VSV applies suction to your finger.

    Standard:
    Techstream Operation
    Specified Condition
    VSV ON
    Purge VSV port applies suction to finger
    VSV OFF
    Purge VSV port applies no suction to finger

    Result:
    Result
    Proceed to
    NG
    A
    OK
    B

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. Even if the results are normal, the purge VSV may have been malfunctioning. Continue this inspection procedure until step 24, and if there are no problems with other parts, replace the purge VSV (refer to step 58).
  1. Reconnect the purge VSV connector.



B
Go to step 22
A


19.INSPECT PURGE VSV
  1. Inspect the purge VSV (Click here).



NG
REPLACE PURGE VSV (Click here)
OK


20.CHECK PURGE VSV (POWER SOURCE VOLTAGE)


    A107917E15
  1. Disconnect the purge VSV connector.

  1. Turn the ignition switch to ON.

  1. Measure the voltage according to the value(s) in the table below.

    Standard Voltage:
    Tester Connection
    Switch Condition
    Specified Condition
    B19-2 - Body ground
    Ignition switch ON
    11 to 14 V

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. Make sure there is not an excessive amount of force applied to the wire harness.
    3. When this inspection is performed, the MIL may illuminate. After finishing the inspection, check and clear the DTCs (Click here).
  1. Reconnect the purge VSV connector.



NG
REPAIR OR REPLACE HARNESS OR CONNECTOR (PURGE VSV - INTEGRATION RELAY)
OK


21.CHECK HARNESS AND CONNECTOR (PURGE VSV - ECM)
  1. Disconnect the purge VSV connector.

  1. Disconnect the ECM connector.

  1. Measure the resistance according to the value(s) in the table below.

    Standard Resistance (Check for Open):

    Tester Connection
    Condition
    Specified Condition
    B19-1 - B31-62 (PRG)
    Always
    Below 1 Ω

    Standard Resistance (Check for Short):

    Tester Connection
    Condition
    Specified Condition
    B19-1 or B31-62 (PRG) - Body ground
    Always
    10 kΩ or higher

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. Make sure there is not an excessive amount of force applied to the wire harness.
  1. Reconnect the ECM connector.

  1. Reconnect the purge VSV connector.



NG
REPAIR OR REPLACE HARNESS OR CONNECTOR
OK

REPLACE ECM (Click here)  

22.PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE FUEL PUMP/SPEED)
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Turn the Techstream on.

  1. Enter the following menus: Powertrain / Engine and ECT / Active Test / Control the Fuel Pump/Speed.

  1. Check whether the fuel pump operating sound occurs when performing the Active Test on the Techstream.

    Standard:

    Techstream Operation
    Specified Condition
    ON
    Operating sound heard
    OFF
    Operating sound not heard

    Result:

    Result
    Proceed to
    NG
    A
    OK
    B

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. While performing the Active Test, make sure that there is no fuel leakage from the pipes, no signs that fuel has leaked, and no fuel smell.
    3. If the fuel pump operating noise is abnormal, proceed to step 23.


B
Go to step 24
A


23.INSPECT FUEL PUMP
  1. Inspect the fuel pump (Click here).



NG
REPLACE FUEL PUMP (Click here)
OK

CHECK FUEL PUMP CONTROL CIRCUIT (Click here)  

24.CHECK FUEL SYSTEM
  1. Check for foreign matter such as iron particles around the fuel pump (fuel pump, fuel pump filter and inside the fuel tank), and for signs that the fuel pump was stuck.

    Result:

    Result
    Proceed to
    There is foreign matter or signs that fuel pump was stuck
    A
    There is no foreign matter and no signs that fuel pump was stuck
    B

    HINT:
    If there is foreign matter such as iron particles on the fuel pump, fuel filter or fuel tank, remove the foreign matter.


B
Go to step 58
A

REPAIR OR REPLACE FUEL SYSTEM 

25.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Suspected Area
    Proceed to
    Calculate Load
    110% or more of the current value of the vehicle*1
    Mass air flow meter sub-assembly
    A
    AFS Voltage B1S1
    Below 3.3 V*2
    1. Air fuel ratio sensor
    2. Harness or connector
    3. Actual air-fuel ratio abnormal
    B
    Both freeze frame data items listed above
    Values are other than above
    -
    C

    HINT:
    1. Try to operate the vehicle under the conditions recorded in the freeze frame data which were present when the malfunction occurred. Confirm the data at this time and the data when the engine is idling (engine warmed up and no load) and compare these data with the freeze frame data.
    2. *1: If the mass air flow meter sub-assembly is malfunctioning and incorrectly measures the intake air volume to be higher than the actual volume of air flowing through the intake manifold, the freeze frame data will show a high engine load value.
    3. *2: As the air fuel ratio sensor output is low before the sensor warms up, the value at that time cannot be used for diagnosis. If the air fuel ratio sensor is malfunctioning and constantly outputs a value indicating the air-fuel ratio is rich, the actual air-fuel ratio will become lean and the engine may stall.


B
Go to step 27

C
Go to step 30
A


26.CHECK MASS AIR FLOW METER
  1. Remove the mass air flow meter sub-assembly.

  1. Check for foreign matter in the air flow passage of the mass air flow meter sub-assembly.

    Result:

    Result
    Proceed to
    Visible foreign matter is present
    A
    Visible foreign matter is not present
    B

HINT:
Even if the results are normal, the mass air flow meter sub-assembly may have been malfunctioning. Continue this inspection procedure until step 34, and if there are no problems with other parts, replace the mass air flow meter sub-assembly (refer to step 58).


B
Go to step 30
A

REPLACE MASS AIR FLOW METER SUB-ASSEMBLY (Click here)  

27.PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE INJECTION VOLUME)


    A215382E20
  1. Connect the Techstream to the DLC3.

  1. Start the engine, turn off all accessory switches and warm up the engine until the engine coolant temperature stabilizes.

  1. Idle the engine.

  1. Turn the Techstream on.

  1. Enter the following menus: Powertrain / Engine and ECT / Active Test / Control the Injection Volume / All Data / AFS Voltage B1S1 and O2S B1S2.

  1. Read the output voltage from the air fuel ratio sensor when increasing and decreasing the fuel injection volume.

    Standard:
    Techstream Display
    Specified Condition
    Control the Injection Volume (12%)
    Air fuel ratio sensor output voltage is below 3.1 V
    Control the Injection Volume (-12%)
    Air fuel ratio sensor output voltage is higher than 3.4 V

    Result:
    Result
    Proceed to
    NG
    A
    OK
    B

    HINT:
    1. The air fuel ratio sensor has an output delay of a few seconds and the heated oxygen sensor has a maximum output delay of approximately 20 seconds.
    2. If there is almost no response from the air fuel ratio sensor, a malfunction of the air fuel ratio sensor is suspected.
    3. Even if the results are normal, the air fuel ratio sensor may have been malfunctioning. Continue this inspection procedure until step 34, and if there are no problems with other parts, replace the air fuel ratio sensor (refer to step 58).


B
Go to step 30
A


28.CHECK AIR FUEL RATIO SENSOR (POWER SOURCE VOLTAGE)


    A170690E03
  1. Disconnect the air fuel ratio sensor connector.

  1. Turn the ignition switch to ON.

  1. Measure the voltage according to the value(s) in the table below.

    Standard Voltage:
    Connection
    Switch Condition
    Specified Condition
    B89-2 (+B) - Body ground
    Ignition switch ON
    11 to 14 V

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. Make sure there is not an excessive amount of force applied to the wire harness.
    3. When this inspection is performed, the MIL may illuminate. After finishing the inspection, check and clear the DTCs (Click here).
  1. Reconnect the air fuel ratio sensor connector.



NG
CHECK AIR FUEL RATIO SENSOR POWER SOURCE CIRCUIT (Click here)
OK


29.CHECK HARNESS AND CONNECTOR (AIR FUEL RATIO SENSOR - ECM)
  1. Disconnect the air fuel ratio sensor connector.

  1. Disconnect the ECM connector.

  1. Measure the resistance according to the value(s) in the table below.

    Standard Resistance (Check for Open):

    Connection
    Condition
    Specified Condition
    B89-1 (HA1A) - B31-104 (HA1A)
    Always
    Below 1 Ω
    B89-3 (A1A+) - B31-103 (A1A+)
    Always
    Below 1 Ω
    B89-4 (A1A-) - B31-126 (A1A-)
    Always
    Below 1 Ω

    Standard Resistance (Check for Short):

    Connection
    Condition
    Specified Condition
    B89-1 (HA1A) or B31-104 (HA1A) - Body ground
    Always
    10 kΩ or higher
    B89-3 (A1A+) or B31-103 (A1A+) - Body ground
    Always
    10 kΩ or higher
    B89-4 (A1A-) or B31-126 (A1A-) - Body ground
    Always
    10 kΩ or higher

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. Make sure there is not an excessive amount of force applied to the wire harness.
  1. Reconnect the ECM connector.

  1. Reconnect the air fuel ratio sensor connector.



NG
REPAIR OR REPLACE HARNESS OR CONNECTOR
OK

REPLACE AIR FUEL RATIO SENSOR (Click here)  

30.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Proceed to
    Initial Engine Coolant Temp, Ambient Temp for A/C, Initial Intake Air Temp
    Difference in temperature between each item is below 10°C (18°F)*1
    A
    Difference in temperature between each item is 10°C (18°F) or more*2
    B

    HINT:
    1. *1: A long time had elapsed after stopping the engine.
    2. *2: A long time had not elapsed after stopping the engine.


B
Go to step 33
A


31.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.



  1. Using the Techstream, confirm the vehicle conditions when the DTC was stored which are recorded in the freeze frame data (Click here).


    A217929E05


    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Suspected Area
    Proceed to
    Initial Engine Coolant Temp, Coolant Temp, Engine Run Time
    Range A
    1. Engine coolant temperature sensor
    2. Thermostat
    A
    Range B
    Engine coolant temperature
    B
    Range C
    -
    C

    HINT:
    This step is not directly related to engine stall.


B
Go to step 34

C
Go to step 59
A


32.INSPECT THERMOSTAT

HINT:
For the thermostat inspection, refer to the following procedures (Click here).

Result:

Result
Proceed to
NG
A
OK
B

HINT:
This step is not directly related to engine stall.


B
Go to step 34
A

REPLACE THERMOSTAT (Click here)  

33.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Suspected Area
    Proceed to
    Coolant Temp
    120°C (248°F) or higher
    Engine coolant temperature sensor
    A
    Coolant Temp, Ambient Temp for A/C
    Engine coolant temperature is lower than outside temperature by 15°C (27°F) or more
    Engine coolant temperature sensor
    Both freeze frame data items listed above
    Values are other than above
    -
    B


B
Go to step 59
A


34.INSPECT ENGINE COOLANT TEMPERATURE SENSOR

HINT:
For the engine coolant temperature sensor inspection, refer to the following procedures (Click here).

Result:

Result
Proceed to
NG
A
OK
B

HINT:
Even if the results are normal, the engine coolant temperature sensor may have been malfunctioning. If there are no problems with other parts, replace the engine coolant temperature sensor (refer to step 58).


B
Go to step 58
A

REPLACE ENGINE COOLANT TEMPERATURE SENSOR (Click here)  

35.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Suspected Area
    Proceed to
    Total of ISC Learning Value and ISC Feedback Value
    Below 80% of the current value of the vehicle*1
    Throttle body assembly
    A
    120% or more of the current value of the vehicle*2
    B
    From 80 to 120% of the current value of the vehicle
    -
    C

    HINT:
    1. Try to operate the vehicle under the conditions recorded in the freeze frame data which were present when the malfunction occurred. Confirm the data at this time and the data when the engine is idling (engine warmed up and no load) and compare these data with the freeze frame data.
    2. *1: If the throttle body assembly has a temporary problem in which it cannot fully close, the intake air volume and engine speed increase. As a result, the ISC learning amount becomes less than the standard. At this time, if the throttle body assembly returns to normal and fully closes, the intake air volume will be insufficient and the engine may stall.
    3. *2: If carbon accumulates on the throttle body assembly and the intake air volume decreases, the ISC learning amount is increased to maintain the idling speed. If this situation continues, the ISC learning amount reaches the upper limit, the idling speed cannot be maintained causing idling to become unstable, and the engine may stall.


B
Go to step 37

C
Go to step 38
A


36.CHECK THROTTLE BODY ASSEMBLY
  1. Check for foreign matter and signs that the throttle body assembly was stuck, and also check that the valve and shaft move smoothly during operation.

    Result:

    Result
    Proceed to
    NG
    A
    OK
    B

    HINT:
    Even if the results are normal, the throttle body assembly may have been malfunctioning. Continue this inspection procedure until step 42, and if there are no problems with other parts, replace the throttle body assembly (refer to step 58).


B
Go to step 38
A

REPLACE THROTTLE BODY ASSEMBLY (Click here)  

37.CHECK THROTTLE BODY ASSEMBLY
  1. Check if carbon is in the air flow passage of the throttle body.

    Result:

    Result
    Proceed to
    Carbon in passage
    A
    No carbon in passage
    B

    HINT:
    Even if the results are normal, the throttle body assembly may have been malfunctioning. Continue this inspection procedure until step 42, and if there are no problems with other parts, replace the throttle body assembly (refer to step 58).


B
Go to step 38
A

REPLACE THROTTLE BODY ASSEMBLY (Click here)  

38.PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE VVT LINEAR)
A219635E15
  1. Connect the Techstream to the DLC3.

  1. Start the engine.

  1. Turn the Techstream on.

  1. Enter the following menus: Powertrain / Engine and ECT / Active Test / Control the VVT Linear (Bank 1).

    HINT:
    When performing the Active Test, make sure the A/C is on and the shift lever is in neutral.
  1. Check the engine speed while operating the camshaft timing oil control valve using the Techstream.

    OK:
    Techstream Operation
    Specified Condition
    0%
    Normal engine speed
    100%
    Engine idles roughly or stalls

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. When the results of the inspection using the Active Test are normal but the valve operating noise is abnormal, check the valve for any signs of problems.
    3. If the camshaft timing oil control valve is stuck on, the valve overlap increases and combustion worsens due to the internal EGR which may cause rough idle or cause the engine to stall.


NG
REPLACE CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY (INTAKE CAMSHAFT) (Click here)
OK


39.PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE VVT EXHAUST LINEAR)
  1. Connect the Techstream to the DLC3.

  1. Start the engine.

  1. Turn the Techstream on.

  1. Enter the following menus: Powertrain / Engine and ECT / Active Test / Control the VVT Exhaust Linear (Bank 1).

  1. Check the engine speed while operating the camshaft timing oil control valve using the Techstream.

    OK:

    Techstream Operation
    Specified Condition
    0%
    Normal engine speed
    100%
    Engine idles roughly or stalls

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. When the results of the inspection using the Active Test are normal but the valve operating noise is abnormal, check the valve for any signs of problems.
    3. If the camshaft timing oil control valve is stuck on, the valve overlap increases and combustion worsens due to the internal EGR which may cause rough idle or cause the engine to stall.


NG
REPLACE CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY (EXHAUST CAMSHAFT) (Click here)
OK


40.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Suspected Area
    Proceed to
    IGN Advance
    Knock Correct Learn Value
    Differs from the current value of the vehicle by 10 deg or more
    Below 3°CA
    1. Engine coolant temperature sensor
    2. Mass air flow meter sub-assembly
    3. Knock control sensor
    A
    3°CA or more
    -
    B
    Differs from the current value of the vehicle by less than 10 deg
    -
    -

    HINT:
    1. Try to operate the vehicle under the conditions recorded in the freeze frame data which were present when the malfunction occurred. Confirm the data at this time and the data when the engine is idling (engine warmed up and no load) and compare these data with the freeze frame data.
    2. Even if the results are normal, the knock control sensors may have been malfunctioning. If there are no problems with other parts, replace the knock control sensors (refer to step 58).


B
Go to step 58
A


41.INSPECT ENGINE COOLANT TEMPERATURE SENSOR

HINT:
For the engine coolant temperature inspection, refer to the following procedures (Click here).


NG
REPLACE ENGINE COOLANT TEMPERATURE SENSOR (Click here)
OK


42.INSPECT MASS AIR FLOW METER SUB-ASSEMBLY
  1. Inspect the mass air flow meter sub-assembly (Click here).

    HINT:
    If the intake air temperature sent to the ECM is higher than the standard due to the mass air flow meter sub-assembly (intake air temperature sensor) malfunctioning, the ignition timing may become delayed.


NG
REPLACE MASS AIR FLOW METER SUB-ASSEMBLY (Click here)
OK

REPLACE KNOCK CONTROL SENSOR (Click here)  

43.CHECK FUEL INJECTOR ASSEMBLY (POWER SOURCE VOLTAGE)


    A157859E26
  1. Disconnect the fuel injector connector.

  1. Turn the ignition switch to ON.

  1. Measure the voltage according to the value(s) in the table below.

    Standard Voltage:
    Connection
    Switch Condition
    Specified Condition
    B9-1 - Body ground
    Ignition switch ON
    11 to 14 V
    B10-1 - Body ground
    Ignition switch ON
    11 to 14 V
    B11-1 - Body ground
    Ignition switch ON
    11 to 14 V
    B12-1 - Body ground
    Ignition switch ON
    11 to 14 V

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. Make sure there is not an excessive amount of force applied to the wire harness.
    3. A rapid decrease in engine speed may have been caused by a malfunction in all or multiple cylinders. (There may be an electrical malfunction in the wiring shared by all the cylinders.)
  1. Reconnect the fuel injector connector.



NG
CHECK FUEL INJECTOR CIRCUIT (Click here)
OK


44.CHECK IGNITION COIL ASSEMBLY (POWER SOURCE VOLTAGE)


    A115969E24
  1. Disconnect the ignition coil connector.

  1. Turn the ignition switch to ON.

  1. Measure the voltage according to the value(s) in the table below.

    Standard Voltage:
    Connection
    Switch Condition
    Specified Condition
    B26-1 (+B) - B26-4 (GND)
    Ignition switch ON
    11 to 14 V
    B27-1 (+B) - B27-4 (GND)
    Ignition switch ON
    11 to 14 V
    B28-1 (+B) - B28-4 (GND)
    Ignition switch ON
    11 to 14 V
    B29-1 (+B) - B29-4 (GND)
    Ignition switch ON
    11 to 14 V

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. Make sure there is not an excessive amount of force applied to the wire harness.
    3. A rapid decrease in engine speed may have been caused by a malfunction in all or multiple cylinders. (There may be an electrical malfunction in the wiring shared by all the cylinders.)
    4. When this inspection is performed, the MIL may illuminate. After finishing the inspection, check and clear the DTCs (Click here).
  1. Reconnect the ignition coil connector.



NG
CHECK POWER SOURCE CIRCUIT (Click here)
OK


45.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Suspected Area
    Proceed to
    Idle Spark Advn Ctrl (#1 to #4)
    At least one cylinder shows a value of 4°CA or more
    1. Fuel injector system
    2. Ignition coil system
    A
    All cylinders show a value of less than 4°CA
    -
    B


B
Go to step 47
A


46.READ FREEZE FRAME DATA
  1. Change the location of the ignition coil for the cylinder whose Idle Spark Advn Ctrl (#1 to #4) was 4°CA or more in step 45.

  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Turn the Techstream on.

  1. Enter the following menus: Powertrain / Engine and ECT / Data List / Idle Spark Advn Ctrl (#1 to #4).

    Result:

    Result
    Proceed to
    Same as result in step 45
    A
    Different from result in step 45
    B

    HINT:
    Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.


B
REPLACE IGNITION COIL (Click here)
A


47.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Suspected Area
    Proceed to
    A/C Signal
    Air Conditioner FB Val
    Power Steering Signal
    A/C Signal display does not change from OFF*1
    Value displayed for Air Conditioner FB Val does not increase
    Does not change from OFF
    -
    A*2
    B*3
    Change from OFF to ON
    Power steering system
    A/C Signal display changes from OFF to ON*1
    Value displayed for Air Conditioner FB Val increase
    Change from OFF to ON
    Does not change from OFF
    A/C system
    C*4
    D*5
    1. *1: Check not only the ON / OFF state of the air conditioner but also the change in air conditioner load.
    2. *2: for Automatic transaxle models
    3. *3: for Manual transaxle models
    4. *4: for Automatic air conditioning system
    5. *5: for Manual air conditioning system

    HINT:
    1. Try to operate the vehicle under the conditions recorded in the freeze frame data which were present when the malfunction occurred. Confirm the data at this time and the data when the engine is idling (engine warmed up and no load) and compare these data with the freeze frame data.
    2. The normal value for the ISC learning amount is engine displacement (liters) x 0.9.
    3. Even if the results are normal, the air conditioning system may have been malfunctioning. Continue this inspection procedure until step 50, and if there are no problems with other parts, inspect the air conditioning system (refer to step 58).


B
Go to step 49

C
CHECK AIR CONDITIONING SYSTEM (Click here)

D
CHECK AIR CONDITIONING SYSTEM (Click here)
A


48.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Suspected Area
    Proceed to
    Electrical Load Signal 1 and 2
    Electric Load Feedback Val
    Difference between Engine Speed and SPD (NT)
    Vehicle Speed
    Electrical Load Signal 1 and 2 display changes from OFF to ON*1, or value displayed for Electric Load Feedback Val increases*1
    Value displayed for Electric Load Feedback Val changes
    -
    -
    Electrical load signal circuit
    A
    Value displayed for Electric Load Feedback Val does not change
    At least 1 of the 5 sets of freeze frame data is below 100 rpm
    Below 19 mph (30 km/h)
    Automatic transaxle system
    B
    19 mph (30 km/h) or more
    -
    C
    All 5 sets of freeze frame data are 100 rpm or more
    -
    -
    C
    Electrical Load Signal 1 and 2 display does not change from OFF, or value displayed for Electric Load Feed back Val does not increase
    -
    At least 1 of the 5 sets of freeze frame data is below 100 rpm
    Below 19 mph (30 km/h)
    Automatic transaxle system
    B
    19 mph (30 km/h) or more
    -
    C
    All 5 sets of freeze frame data are 100 rpm or more
    -
    -
    C
    1. *1: If the Electrical Load Signal display changes from OFF to ON or the "Electric Load Feedback Val" increases, it probably is a malfunction due to a change in electrical load. Check the generator and ECM.

    HINT:
    1. The normal value for the ISC learning amount is engine displacement (liters) x 0.9.
    2. Even if the results are normal, the electrical load signal system and/or the automatic transaxle system may have been malfunctioning. Continue this inspection procedure until step 50, and if there are no problems with other parts, inspect the electrical load system and/or the automatic transaxle system (refer to step 58).


B
CHECK AUTOMATIC TRANSAXLE SYSTEM (Click here)

C
Go to step 50
A

CHECK GENERATOR CIRCUIT (Click here)  

49.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Suspected Area
    Proceed to
    Electrical Load Signal 1 and 2
    Electric Load Feedback Val
    Electrical Load Signal 1 and 2 display changes from OFF to ON*, or Value displayed for Electric Load Feedback Val increases*
    Value displayed for Electric Load Val changes
    Electrical load signal circuit
    A
    Value displayed for Electric Load Val does not change
    -
    B
    Electrical Load Signal 1 and 2 display does not change from OFF, or Value displayed for Electric Load Feedback Val does not increase
    -
    -
    B
    1. *: If the Electrical Load Signal display changes from OFF to ON or the "Electric Load Feedback Val" increases, it probably is a malfunction due to a change in electrical load. Check the generator and the continuity and connections between the generator and ECM.

    HINT:
    Even if the results are normal, the electrical load signal system may have been malfunctioning. Continue this inspection procedure until step 50, and if there are no problems with other parts, inspect the electrical load system (refer to step 58).


B
Go to step 58
A

CHECK GENERATOR CIRCUIT (Click here)  

50.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Suspected Area
    Proceed to
    Shift SW Status (P Range) or Shift SW Status (N Range)
    Neutral Position SW Signal
    At least 1 of the 5 sets of freeze frame data is OFF
    In D or R, NSW is ON
    Park/Neutral position switch
    A
    In D or R, NSW is OFF
    Automatic transaxle system
    B
    All 5 sets of freeze frame data are ON
    -
    -
    C

    HINT:
    Even if the results are normal, the park/neutral position switch and/or automatic transaxle system may have been malfunctioning. If there are no problems with other parts, inspect the park/neutral position switch and/or automatic transaxle system (refer to step 58).


B
CHECK AUTOMATIC TRANSAXLE SYSTEM (Click here)

C
Go to step 58
A

INSPECT PARK/NEUTRAL POSITION SWITCH ASSEMBLY (Click here)  

51.READ FREEZE FRAME DATA
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Using the Techstream, confirm the vehicle conditions recorded in the freeze frame data which were present when the DTC was stored (Click here).

    Result:

    Freeze Frame Data Item for DTC P1605
    Result
    Suspected Area
    Proceed to
    Throttle Sensor Position, Calculate Load
    Calculate Load decreases while Throttle Sensor Position increases
    Mass air flow meter sub-assembly
    A
    Calculate Load does not decrease while Throttle Sensor Position increases
    -
    B


B
Go to step 53
A


52.CHECK MASS AIR FLOW METER SUB-ASSEMBLY
  1. Remove the mass air flow meter sub-assembly.

  1. Check for foreign matter in the air flow passage of the mass air flow meter sub-assembly.

    Result:

    Result
    Proceed to
    Visible foreign matter is present
    A
    Visible foreign matter is not present
    B
  1. Install the mass air flow meter sub-assembly.

    HINT:
    Even if the results are normal, the mass air flow meter sub-assembly may have been malfunctioning. Continue this inspection procedure until step 57, and if there are no problems with other parts, replace the mass air flow meter sub-assembly (refer to step 58).


B
Go to step 53
A

REPLACE MASS AIR FLOW METER SUB-ASSEMBLY (Click here)  

53.CHECK FUEL INJECTOR ASSEMBLY (POWER SOURCE VOLTAGE)


    A157859E26
  1. Disconnect the fuel injector connector.

  1. Turn the ignition switch to ON.

  1. Measure the voltage according to the value(s) in the table below.

    Standard Voltage:
    Tester Connection
    Switch Condition
    Specified Condition
    B9-1 - Body ground
    Ignition switch ON
    11 to 14 V
    B10-1 - Body ground
    Ignition switch ON
    11 to 14 V
    B11-1 - Body ground
    Ignition switch ON
    11 to 14 V
    B12-1 - Body ground
    Ignition switch ON
    11 to 14 V

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. Make sure there is not an excessive amount of force applied to the wire harness.
    3. A rapid decrease in engine speed may have been caused by a malfunction in all or multiple cylinders. (There may be an electrical malfunction in the wiring shared by all the cylinders.)
  1. Reconnect the fuel injector connector.



NG
CHECK FUEL INJECTOR CIRCUIT (Click here)
OK


54.CHECK IGNITION COIL ASSEMBLY (POWER SOURCE VOLTAGE)


    A115969E24
  1. Disconnect the ignition coil connector.

  1. Turn the ignition switch to ON.

  1. Measure the voltage according to the value(s) in the table below.

    Standard Voltage:
    Tester Connection
    Switch Condition
    Specified Condition
    B26-1 (+B) - B26-4 (GND)
    Ignition switch ON
    11 to 14 V
    B27-1 (+B) - B27-4 (GND)
    Ignition switch ON
    11 to 14 V
    B28-1 (+B) - B28-4 (GND)
    Ignition switch ON
    11 to 14 V
    B29-1 (+B) - B29-4 (GND)
    Ignition switch ON
    11 to 14 V

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. Make sure there is not an excessive amount of force applied to the wire harness.
    3. A rapid decrease in engine speed may have been caused by a malfunction in all or multiple cylinders. (There may be an electrical malfunction in the wiring shared by all the cylinders.)
    4. When this inspection is performed, the MIL may illuminate. After finishing the inspection, check and clear the DTCs (Click here).
  1. Reconnect the ignition coil connector.



NG
CHECK POWER SOURCE CIRCUIT (Click here)
OK


55.PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE FUEL PUMP/SPEED)
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Turn the Techstream on.

  1. Enter the following menus: Powertrain / Engine and ECT / Active Test / Control the Fuel Pump/Speed.

  1. Check whether the fuel pump operating sound occurs when performing the Active Test on the Techstream.

    Specified Condition:

    Techstream Operation
    Specified Condition
    ON
    Operating sound heard
    OFF
    Operating sound not heard

    Result:

    Result
    Proceed to
    NG
    A
    OK
    B

    HINT:
    1. Jiggle the wire harness and connector to increase the likelihood of detecting malfunctions that do not always occur.
    2. While performing the Active Test, make sure that there is no fuel leakage from the pipes, no signs that fuel has leaked, and no fuel smell.
    3. If the fuel pump operating noise is abnormal, proceed to step 56.


B
Go to step 57
A


56.INSPECT FUEL PUMP
  1. Inspect the fuel pump (Click here).



NG
REPLACE FUEL PUMP (Click here)
OK

CHECK FUEL PUMP CONTROL CIRCUIT (Click here)  

57.CHECK FUEL SYSTEM
  1. Check for foreign matter such as iron particles around the fuel pump (fuel pump, fuel pump filter, the fuel tank), and for signs that the fuel pump was stuck.

    Result:

    Result
    Proceed to
    There is foreign matter or signs that fuel pump was stuck
    A
    There is no foreign matter and no signs that fuel pump was stuck
    B


B
Go to step 58
A

REPAIR OR REPLACE FUEL SYSTEM 

58.REPLACE MALFUNCTIONING PARTS
  1. If the malfunction could not be identified in steps 3 to 24, replace the part which is suspected to be malfunctioning according to the step where an inspection was performed.

    Performed Step
    Inspection or Part to Replace
    Step 6
    Brake booster replacement
    Step 8
    Mass air flow meter sub-assembly replacement
    Step 9
    Air fuel ratio sensor replacement
    Step 16
    Engine coolant temperature sensor replacement
    Step 18
    Purge VSV replacement
    Step 24
    Fuel pump replacement
  1. If the malfunction could not be identified in steps 25 to 34, replace the part which is suspected to be malfunctioning according to the step where an inspection was performed.

    Performed Step
    Inspection or Part to Replace
    Step 26
    Mass air flow meter sub-assembly replacement
    Step 27
    Air fuel ratio sensor replacement
    Step 34
    Engine coolant temperature sensor replacement
  1. If the malfunction could not be identified in steps 35 to 42, replace the part which is suspected to be malfunctioning according to the step where an inspection was performed.

    Performed Step
    Inspection or Part to Replace
    Step 36, 37
    Throttle body assembly replacement
    Step 40
    Knock control sensor replacement
  1. If the malfunction could not be identified in steps 43 to 50, inspect and repair the part which is suspected to be malfunctioning according to the step where an inspection was performed.

    Performed Step
    Inspection or Part to Replace
    Step 47
    A/C system inspection and repair
    Power steering system inspection and repair
    Step 48
    Electrical load system inspection and repair
    Automatic transaxle system inspection or repair
    Step 49
    Electrical load system inspection and repair
    Step 50
    Park/Neutral position switch assembly replacement
    Power steering system inspection and repair
  1. If the malfunction could not be identified in steps 51 to 57, replace the part which is suspected to be malfunctioning according to the step where an inspection was performed.

    Performed Step
    Inspection or Part to Replace
    Step 52
    Mass air flow meter sub-assembly replacement

    HINT:
    Referring to the chart, inspect and repair or replace the part from the step where an inspection was performed.

NEXT


59.CLEAR DTC
  1. Connect the Techstream to the DLC3.

  1. Turn the ignition switch to ON.

  1. Turn the Techstream on.

  1. Clear the DTCs (Click here).


NEXT


60.PERFORM CONFIRMATION DRIVING PATTERN
  1. Check if engine stall symptoms are present.

    HINT:
    If any engine stall symptoms are present, recheck for DTCs and freeze frame data and perform an inspection.


NG
REPAIR OR REPLACE MALFUNCTIONING PARTS, COMPONENT AND AREA
OK

END